

ISSN: 2582-7219

International Journal of Multidisciplinary Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206

Volume 8, Issue 9, September 2025

ISSN: 2582-7219

| www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

A Review on Research and Practice of Project-**Based Teaching Model in Master of Engineering Management Program Based on CDIO Educational Philosophy**

Yi Peng¹, Shanshan Li¹

Lecturer, School of Management, Hunan City University, Yiyang, China¹

ABSTRACT: The rapid evolution of the global engineering sector demands that future engineering managers possess not only deep technical knowledge but also robust abilities in conception, design, implementation, and operation of complex systems. Traditional lecture-based pedagogical approaches in Master of Engineering Management (MEM) programs often fall short in fostering these integrated competencies. This review explores the integration of the Conceive-Design-Implement-Operate (CDIO) initiative, a renowned innovative educational framework, with a projectbased learning (PBL) model to enhance MEM education. We begin by elucidating the core principles of the CDIO framework and its innate synergy with PBL. The paper then systematically reviews and synthesizes the application of this combined model across various MEM curricula, highlighting how it transforms the learning process into an experiential, student-centered journey that mirrors real-world engineering challenges. Key aspects include the design of conceiving-designing projects, the implementation of hands-on, iterative learning activities, and the operation phase that emphasizes value creation and lifecycle thinking. Furthermore, the review addresses the practical challenges in implementation, such as faculty development, resource allocation, and outcome assessment, while proposing potential solutions. Evidence from existing literature suggests that the CDIO-based PBL model significantly improves students' abilities in problem-solving, teamwork, leadership, and systemic thinking, thereby narrowing the gap between academic training and industry requirements. This study concludes that the CDIO-infused project-based teaching mode represents a promising and effective paradigm for the future development of high-quality, industry-relevant engineering management education.

KEYWORDS: CDIO Initiative; Project-Based Learning (PBL); Master of Engineering Management (MEM); Engineering Education Reform; Curriculum Design; Experiential Learning

I. INTRODUCTION

The field of engineering management sits at the critical intersection of technology, business, and leadership. Graduates of Master of Engineering Management (MEM) programs are expected to lead cross-functional teams, manage complex projects, and drive innovation from conception to market. However, a persistent criticism from industry has been that traditional, siloed academic instruction fails to equip students with the holistic skill set required for these roles [1]. This gap underscores an urgent need for pedagogical innovation.

Two educational frameworks have emerged as potent responses to this challenge: the Conceive-Design-Implement-Operate (CDIO) initiative and Project-Based Learning (PBL). The CDIO initiative provides a comprehensive, principle-based framework for engineering education that stresses learning fundamentals in the context of conceiving, designing, implementing, and operating real-world systems and products [2]. Concurrently, PBL is an instructional methodology that engages students in learning knowledge and skills through an extended inquiry process structured around complex, authentic questions and carefully designed products and tasks [3].

This paper aims to provide a systematic review of the integration of the CDIO philosophy within a project-based teaching model specifically for MEM education. We posit that this fusion creates a powerful, experiential learning environment that is highly congruent with the goals of modern engineering management training. This review will analyze the theoretical underpinnings, practical applications, documented outcomes, and prevailing challenges of this integrated model.

ISSN: 2582-7219

| www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

II. THE CDIO FRAMEWORK AND ITS RELEVANCE TO MEM

The CDIO initiative was founded with the vision of educating students who can master a deep working knowledge of technical fundamentals while simultaneously leading in the creation and operation of new products, processes, and systems. Its 12 standards provide a guideline for developing curricula, designing workspaces, and enhancing faculty competence [2].

For MEM education, the CDIO framework is particularly relevant:

Conceive (C): This phase involves defining customer needs, considering technology strategy, and developing concepts, technical requirements, and business plans. This aligns perfectly with the core MEM subjects like product management, technological innovation, and business strategy.

Design (D): This focuses on creating the design, i.e., the plans, drawings, and algorithms that describe the system. This resonates with the project planning, systems engineering, and risk management courses in an MEM program.

Implement (I): This translates the design into the product, including manufacturing, coding, testing, and validation. This phase emphasizes the practical execution and project management skills central to an MEM's role.

Operate (O): This stage involves using the implemented product to deliver intended value, including maintenance, evolution, and retirement. This introduces lifecycle management, sustainability, and ethical considerationsincreasingly important topics for engineering managers.

The framework moves beyond knowledge acquisition to focus on the application of knowledge within a professional context, making it an ideal foundation for MEM education.

III. PROJECT-BASED LEARNING (PBL) AS THE VEHICLE FOR CDIO IMPLEMENTATION

PBL provides the ideal pedagogical vehicle to operationalize the CDIO philosophy. While CDIO defines the what (the competencies), PBL defines the how (the learning process). In a CDIO-based PBL model for MEM:

The "project" is no longer a simple assignment but a scaffolded, semester-long (or longer) simulation of a real-world engineering management challenge.

Student teams progress through the entire CDIO cycle. They might Conceive a new product based on market analysis, Design its development roadmap and business model, Implement a prototype and a detailed project plan, and finally, develop a strategy to Operate and support it in the market.

Faculty act as facilitators and coaches rather than sole knowledge dispensers, guiding teams through obstacles and providing just-in-time instruction on necessary theoretical concepts (e.g., cost accounting, quality control, organizational behavior) as the project demands.

This approach creates a highly active and engaging learning environment where theoretical knowledge is acquired and applied contextually, leading to deeper understanding and longer retention [4].

IV. INTEGRATION MODELS AND PRACTICAL APPLICATIONS

Literature shows various models for integrating CDIO and PBL in MEM programs, often categorized by the scale and scope of the project:

- 1. Course-Level Integration: A single core course (e.g., "Project Management" or "Product Development") is restructured around a major project that follows the CDIO cycle [5].
- Program-Level Integration (Capstone Projects): The entire curriculum is designed so that courses feed into a culminating, multi-semester capstone project. Students form companies and take a product from a mere idea (Conceive) to a functional prototype and a full business plan (Design, Implement, Operate) [6].

DOI:10.15680/IJMRSET.2025.0809023

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

3. Industry-Sponsored Projects: Real problems from partner companies are used as project themes. This provides unmatched authenticity, exposes students to real corporate constraints and cultures, and often facilitates networking and employment opportunities [7].

Assessment also shifts from purely exam-based to a multifaceted approach, including peer evaluations, project reports, prototype demonstrations, presentations to industry panels, and reflections on personal and professional development.

V. CHALLENGES AND FUTURE DIRECTIONS

Despite its benefits, implementing a CDIO-based PBL model presents significant challenges:

Faculty Development: Instructors must transition from subject experts to learning facilitators, requiring training in coaching and project guidance.

Resource Intensity: This model requires smaller student-faculty ratios, dedicated project space (e.g., innovation labs), and often higher budgets.

Assessment Complexity: Developing reliable and valid rubrics to assess individual contributions within team-based, multifaceted projects is difficult.

Curriculum Integration: Seamlessly weaving the project experience across multiple courses requires extensive curricular redesign and collaboration among faculty.

Future research should focus on longitudinal studies tracking the career progression of graduates from such programs, developing standardized tools for assessing "softer" skills like leadership and systemic thinking, and exploring the role of digital tools (e.g., VR, simulation software) in enhancing the CDIO-PBL experience.

VI. CONCLUSION

The integration of the CDIO educational philosophy with a project-based learning model offers a transformative and highly effective approach to educating the next generation of engineering managers. By immersing students in a complete cycle of Conceiving, Designing, Implementing, and Operating complex systems, this model effectively bridges the gap between theory and practice. It cultivates not only technical and managerial knowledge but also the indispensable abilities of critical thinking, teamwork, adaptation, and innovation. While implementation hurdles exist, the compelling evidence of improved student outcomes and industry readiness justifies its adoption and continued refinement. The CDIO-based PBL paradigm is thus a crucial step towards creating an authentic, relevant, and powerful educational experience for Master of Engineering Management students.

Acknowledgements: This work was supported by the Research Less Teaching and Reform in Hunan Province (No.2024LXBZZ102); Hunan city university's Teaching and Reform Project (No. [2024]30)

REFERENCES

- [1] Crawley, E. F., Malmqvist, J., Östlund, S., Brodeur, D. R., & Edström, K. (2014). Rethinking Engineering Education: The CDIO Approach (2nd ed.). Springer International Publishing.
- [2] Crawley, E. F. (2001). The CDIO Syllabus: A Statement of Goals for Undergraduate Engineering Education. MIT CDIO Report Series, 1.
- [3] Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational Psychologist, 26(3-4), 369–398.
- [4] Helle, L., Tynjälä, P., & Olkinuora, E. (2006). Project-Based Learning in Post-Secondary Education Theory, Practice and Rubber Sling Shots. Higher Education, 51(2), 287–314.
- [5] Song, L., & Wang, Y. (2019). Application of CDIO-Based Project-Driven Teaching Mode in Engineering Management Education. Proceedings of the 2019 5th International Conference on Education, Management and Social Science (ICEMSS 2019). Advances in Social Science, Education and Humanities Research, vol. 345.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

- [6] Edström, K., & Kolmos, A. (2014). PBL and CDIO: Complementary Models for Engineering Education Development. European Journal of Engineering Education, 39(5), 539–555.
- [7] Bankel, J., Berggren, K. F., Engström, M., Wiklund, I., & Crawley, E. F. (2005). The CDIO Syllabus: Outcomes for Engineering Education. Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition.
- [8] Malmqvist, J., Rådberg, K. K., & Lundqvist, U. (2015). Comparative Analysis of Challenge-Based Learning Experiences. Proceedings of the 11th International CDIO Conference, Chengdu University of Information Technology, Chengdu, China.
- [9] Prince, M. J., & Felder, R. M. (2006). Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases. Journal of Engineering Education, 95(2), 123–138.
- [10] Graham, R. (2018). The Global State of the Art in Engineering Education . Massachusetts Institute of Technology (MIT) Report.

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |